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The problem of determining stability criteria for systems weakly dependent on spatial 

variables has been the subject of many recent papers (see [I] and surveys [2 and 31). The 

systems considered in these papers are such, that instability is in fact manifested in the 

finite region of space, while the boundary conditions require that the solutions tend to 

zero at infinity. These stability criterie take the form of a qu~tization condition which, 

in the case of two variables x end t, can be written as [l] 

s [ki (0, x) - kj (0, z)] dx = nn (11 

from which one can determine o . The solutions corresponding to values of o found in this 

manner are celled quasi-classical. Here ki and k. are the roots of the dispersion equation 

(in which x is regarded as a parameter), n is a w 6 ale number, end the integration is per- 

formed in the complex plane x between the branch points zr and x, at which ki = ki, of the 

many-valued analytic function K (0. z). However, as shown in [4] which contains a detailed 

investigation of a single second-order equation, fulfillment of condition (11 does not always 

guarantee the existence of an eigenfunction dsmped at infinity. Paper f4] gives the condi- 

tions necessary for the existence of an eigenfnnction to follow from the fulfillment of 

equation (1). These conditions are connected with the topological structure of the Stokes 

lines on the complex plane x, and are difficult to verify even in the case of a second-order 

equation. 

Considered below are the systems dependent on two variables x and C. It is assumed 

that the state being tested for stability is homogeneous and independent of time, and that 

the points r = i L at which the boundary conditions are stipulated are sufficiently far 

apart (the asymptotic form of the stability condition is considered for L + ~1. Investiga- 

tion of this case, which is simpler than the one dealt with in [l to 41, dan be carried out 

for arbitrary systems. Below it is shown that for snfficiently large L there generally exist 

two types of non-trivial solutions of the boundary value problem : ‘one-sided’ solutions, 

for which the complex frequency o is determined by the boundary conditions at one of the 

ends, and ‘global’ solutions for which CL) is independent of the specific form of the boundary 

conditions. Global soIutions ere nalogous to the quasiclassical solutions found for the 
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weakly inhomogeneous case, but with specific and definite i and i in Equation (1). 

It is shown that for the global instability (i.e. the existence of global solutions with 

Im o > 0) the existence of ro with Im o > 0 such that Im k (w) = 0 for at least one branch 

of the multi-valued function k (01 is necessary, but not sufficient. The relationship 

between global instability and the absolute instability of the unbounded problem is con- 

sidered. 

The study of the stability of a homogeneous time-independent state requires consider- 

ation of a linearized system of equations. We shall assume this to be a system of partial 

differential equations (the possibility of extending the results to other cases will also 

be examined) whose coefficients are constant in the present case. We shall write this 

system in the form 

&$&&+=* (i, j = 1,. . ., n) 
j=t 

where Pii are polynomials in d/at and a/~!) x, and ui (t, r) are unknown functions. The 

(homogeneous) boundary conditions are written as 

(3) 

where B . and B 
41 

Bi are polybomials in a/& and &‘&. 

We shall assume that the condition of Petrovskii [S] is fulfilled for system (2). i.e. 

that the dispersion equation 

IPij (-i0, i/t)] = 0 (4) 

(which results from the requirement that the determinant of system (2) be equal to zero 

when the solution is sought in the form exp i (kx - 08)) is such, that for all real k the 

values of o satisfying equation (4) satisfy the inequality Im w < M, i.e. the rate of growth 

of the sinusoidal perturbations is bounded. This condition will be fulfilled by all the correctly 

stated problems. 

We shall assume that boundary conditions (3) are independent of the equations and 

of each other, i.e. that none of them are satisfied by virtue of the equations and the re- 

maining boundary conditions (none are identically satisfied on the set of solutions of 

equations (2) subject to the remaining boundary conditions). We shall say that a wave of 

the form exp i b& (u))z - atI, given by the branch km (ad proceeds in a certafn direction 

if for Im o > M it diminishes with change of x in this direction. Thus, if the inequality 

Im ki > 0 is fulfilled for Im co > hf. then we shall say that the i-th wave is moving in the 

direction to the right, while if Im ki < 0, then the j-th wave is moving in the direction to the 

left. The condition of correctness of the boundary value problem under coneideration as developed 
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in [6] can then be formulated as follows. The number of boundary conditions on each end 

of a segment is equal to the number of waves emanating from it, so as to guarantee the 

existence of an bf, such, that for o with Im Q > max (U, V,) the amplitudes of the emanat- 

ing waves are uniquely determined by the amplitude of the incident waves. By virtue of the 

Fatrovskii condition for Im o > M equation (4) has no real roots k, so that every wave 

propagates either to the right or to the left. At the same time, the total number of bound- 

ary conditions (3) must equal the total number of waves, which we denote by N. Denoting 

the number of waves proceeding to the right by s, we have, in equations (31, a = 1, 

. . . , s,p =s+l,..., N. 

Let us try to find the eigenfunctions of the problem (2) and (3). Choosing some o, we 

can write the general solution of equations (2) as 

Uj (t, 5) = Uj (0, z) e-io!, 

where C1 are arbitrary constants. Substituting these expressions into the boundary con- 

ditions (31, we have 

N 

2 Cpz,&)e-ik~(“)L=O (U=l,...,S) 

I=1 
N 

2 C&jl (0) efkl Co) L =o @=sfl,...,N) 
1=1 

(6) 

where 

a,,/ (w) = 5 Bai [----if-O, ikl (@)I Wjt (0)~ agl (0) = i B,j I - iW, ikl (a)] Wjl (0) 
j=l j=l 

The necessary condition for the existence of an eiganfunction is that the determinant 

of system (6) used for finding the constants C, vanishes. 

Let us examine the asymptotic behavior of the roots o of this determinant as L + 00. 

For each o not lying on any of the curves Im [i$ (a) - kj (w)] = 0, we shall arrange 

the ki (CO) in the order of decreasing of their imaginary parts. 

Imk,>Imk2> ..a ImkN 

At L + cm, the principal term in the determinant of system (61 contains the largest 

exponential factor 

E = expi[&z(w)- z=$+l kl WI L 

(71 

(81 

multiplied by the product of the determinants of two minors of the matrix A = 11 aij 11. One 

of them, A,, is of the order a and occupies the upper left-hand corner of the matrix A. while 
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the other, AN-~, is of the order N-s and occupies the Iower right-hanf corner of the matrix 

A. The term of the next order of smallness is of the order exp i [ - 2 (k, - &+I) 1 L, 

with respect to the first, and the coefficient of the exponential is the product of the de- 

terminants of the similarly situated minors A i and A i_s of the matrix obtained from A by 

the interchange of the s-th and s + I-th columns. Thus, retaining the two principal terms 

in the determinant of system (6). we have 

where D denotes the determinant of system (6) divided by E. 

If Im(FE, - kb+J #O, then the fact that the determinant D is equal to zero means, 

that 

(10) 

If the boundary value problem is indeed correct, then equation (91 is not identically 

satisfied with respect to w, since this would mean. in particular, that for LL) with 

Im o > max (M, Ml) the amplitudes of the waves moving away from the boundaries cannot 

be determined uniquely. Consideration of the next term in equation (9) can contribute onfy 

slight corrections to w found from (10). Equation (IO) means that as L + 00, system of 

equations (6) breaks down into two independent subsystems, coefficients of each of which 

depend on the boundary conditions at one end only. If jnst one of the determinants in 

equation (10) is equal to zero, then only those Cl are different from zero which correspond 

to the waves that die out most rapidly as they move away from the end on which the 

boundary conditions entering into this determinant are given. If both determinants are 

simultaneously equal to zero, then two solutions arise, which are subject to the boundary 

conditions at different ends and independent of each other. 

It is natural to call the solutions associated with the vanishing of the determinants 

PSI and I+-al ‘one-sided’. The possibility of the existence of one-aided solutiona in- 

dependent of the boundary conditions at the other end can be explained physically by the 

fact for Im (ks - ks+J # 0 the amplitudes of the waves reflected from the other end 

tend to zero as 15 + 00 in the neighborhood of the end under consideration. 

In addition to the case considered, it is also possible to have a situation where both 

terms in the right-hand side of equation (9) are of the same order and add up to zero. This 
can occur if the inequality 

Im k(o) - &+1(@)1 = 0 (II) 

is satisfied at the limit as .L + 0~. 

Here and henceforth we shall be concerned with the general case when the product 

1 A,’ 11 Adi is not identically equal to zero with respect to o. This can elways be 

achieved by slight.alteration in the boundary conditions. Since the number a in the bound- 

ary conditions is, for x = - L, equal to the number of waves moving to the right, it follows 
that the inequalities Im ks (w) > 0 and Im k,+, (0) < 0 are fulfilled for Im o > M, so that 
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the wave corresponding to ks (w) moves to the right, while the wave corresponding to 

k s+l(o) moves to the left. If Equation (11) is fulfilled for some value of w, then 

IE,(w) - &+t(w) $3 const (12) 

since Equation (11) is obviously not fulfilled for Im w > ,M. ?Zt the same time. since 

equation (11) cannot be fulfilled for any two-dimensional portion of the plane w, Equation 

(111 is the equation of some carve on the plane o. In fact, by virtue of the analyticity of 

the functions k, 6) and k, +, (co) this would mean that the equation (11) would be 

identically satisfied for all w, which is impossible by virtue of (12). If Equation (11) is 

fulfilled for some ~a, then for a sufficiently large L it is possible to find in its neighbor- 

hood such o == o. + Aw, which would make the entire right-hand side of equation (9) 

vanish. Indeed, it can be assumed that the quantities I_&‘/ ]A’N-~\ and _?&[I;, - k,+t] 

are not equal to zero at the point o.ro. If this were not so, then it wouId aIways be possibie 

to find another arbitrarily close point where these conditions were fulfilled. Then, making 

use of the fact that L is large and neglecting, terms on the order of b i.e. small compared 

with L AGJ , we obtain from the condition of vanishing of the right-hand side of Equation 

(91, the following equation for Ao : 

(13) 

exp { - 2iLAo 

This equation has a set of solutions situated near the curve (11) in the neighborhood of 

the point oa. Consideration of terms of the next order of smallness not appearing in the 

right-hand side of (9) yields negligible corrections in the value of o . 

Thus, (11) as well as (10) can be regarded as the limiting form of the equation used 

for determining the eigenvalues of 0. Since the determination of the eigenfunctions cor- 

responding to the eigenvalues of (11) requires that not only the minors corresponding to the 

minors A, and AN-a of the matrix A, but also the neighboring columns be retained in the 

determinant of system (61, the mechanism of constructing the eigenfunction can be pre- 

sented as follows. 

Waves corresponding to kt, . . ., k, are excited at the end x = - L for some frequency 

o. When these waves arrive at the end x = L, one of them, namely the s-th wave has for 

large L, an amplitude which exceeds considerably the amplitudes of all the other waves. 

The latter therefore need not be taken into account in seeking the amplitudes of the waves 

reflected at zx = L and corresponding to k,,,, . . ., kN. When these waves arrive at the 

point n = - L, analogous considerations allow as to disregard all of the incident waves 

except the (s + If-th in determining the amplitudes of the waves reflected at this end. 

In order for an eigenfttnction to exist, it is necessary that the reflection of the (s + I)-th 

wave at the point x = - L results in the formation of an s-th wave possessing the initia1 

amplitude. Equation (11) is an approximate expression of this condition. 
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It is easy to understand the physical meaning of the requirement that (R,‘(]A h-a] f 0. 

It is simply that when the s-th wave is reflected at the paint r = L there forms aad b + I)-th 

wave of non-zero amplitude, and when the (s + I)-th wave is reflected at the point x = - L 
and s-th wave of non-zero amplitude is formed. Since the solutions under consideration 
involve the passage of the corresponding waves over the entire segment [-L, I!+ 1, we call 
them global (to distinguish them from the one-sided solutions considered above). The form 

of equation (111 indicates that the stability criteria based on this equation are rather the 

outcome of the nature of the system in question, than of the specific form of boundary 

conditions. Comparing this equation with (l), one concludes that the global solutions 

constitute an analogne to the quasiclassical ones. Suffice it to say that in Equation 

(111, fully specific branches of the function k (~1 occur. 

Let us now consider the matter of stability as it relates to equation (11). A sufficient 

condition for the instability to occur is, that at least a portion of the cnrve given by 

equation (11) lies in the upper half-plane of the plane o. Otherwise, there is no global 

instability. It can be shown that in the presence of global instability one can find v&es 

of o such that 

Imo>O, Imk(o)=O 
(141 

for at least one branch of k (cd, i.e. a condition often regarded as the condition of instabi- 

lity of unbounded systems (e.g. see [7]) is fulfilled. 

Let us consider o with large values of Im w. Here the roots of k.(o) fall into two 

groups: an upper group Ai, . . . . k, with Ittt 0>0 and a lower groofp kB+x, . . . . kN with 
Im o < 0. If Im w decreases, then in the case of global instability one can find for some 

Im o = p > 0 a point o* for which relations (11) hold. Since k, and k,+ 1 were originally 
on the opposite sides of the real axis k, either,one of them would have had to intersect 

the real axis, or, Im k, = Im k,,, = 0 for w = 0,. Thus, fulfillment of (111 implies, for 
Im o > 0, (14). It is obvious that the converse statement is generally not true. Such s case 
was, for example, considered in [S], where a distinction was discovered between the 

stability criterion obtained for a certain real system by satisfyfng the conditions of the 

boundary value problem at L + 00 exactly, and the criteria which follows from (14). 

Theres exists an important class of problems where the fulfillment of relations (14) 

makes it possible to decide the whether or not the global instability is present. These 

problems involve equations invariant under the substitution of I by -x. In this case each 

w has a corresponding -k as well as a k and (14) implies the fulfillment of equation (1X) 
for the same w as in fI41. 

Let us now look into the connection between global instability and absolate instabi- 
lity (of the unbounded problem), which involves the existence of branch points of the 

function k (cd in the upper half-plane o and the fulfillment of conditions (X4) for one of 
the branches intersecting at this point. It is clear that if the branches meeting at the 

branch point include some belonging to different gronps (k,, .,, h, and 
then eqnations (111 are fnlfilled and instability exists. 

k,+r,. .., kN), 

The considerations developed above can be applied not only to systema invoiving 
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partial differential equations in two independent variables, but also to systems in which an 

infinite number of values of ki (0) correspond to each o. The classic example of such a 

problem is the problem of the stability of flow of a viscous incompressible fluid through 

a tube of a constant cross-section [7], where the relationship k (01 is determined from the 

condition of existence of a non-trivial solution of the boundary-value problem for the 

Orr-Sommerfeld equation. As in the case considered above, for sufficiently large Im o 

the roots of k (0) fall into two groups: an upper group with Im k > 0 and a lower group 

with Im k < 0. The condition that these two groups remain separated by a strip parallel 

to the real axis k as Im o diminishes to zero, is sufficient for the absence of global 

instability. If, on the other hand, such a strip does not exist, then there may be an ok for 

which equation (Ill is fulfilled. In this case ks (w) must be regarded as the root of the 

upper group with the least Im k (a), and k, + 1 (w) as the root of the lower group with the 

largest Im k (a). This involves the appearance of global instability. 

All of the conclusions of the present study can also be applied to the investigation 

of the stability of states inhomogeneous with respect to x, where the inhomogeneity is 

confined to zones narrow compared with L, e.g. in the neighborhood of the ends of the 

segment. The boundary conditions at the ends of the segment together with the adjacent 

regions of inhomogeneity generate certain effective boundary conditions which can be 

stipulated.at the points lying in the fundamental region where the non-perturbed state is 

homogeneous, and which relate the amplitudes of the incident waves from the fundamental 

region to the amplitudes of the waves reflected back into the fundamental region. 

The author is sincerely grateful to S.V. Iordanskii for his comments on the matters 

dealt with in the present study. 
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